师资队伍

当前位置:首页 > 师资队伍 > 教师队伍 > 教授 > 正文

汤京永

时间:2019-06-11 11:50:18 来源: 作者: 阅读:
职位职称 邮箱地址

基本资料

汤京永

职务职称:博士, 教授, 硕士生导师
研究方向:最优化理论与算法

联系方式

联系地址:河南省信阳市南湖路237,464000
办公地点:数学学院516办公室
电子邮箱: tangjy@xynu.edu.cn

个人简介

汤京永,山东泰安人,博士,教授,硕士生导师,美国《Mathematical Reviews》评论员,河南省运筹学学会理事。2003年7月毕业于曲阜师范大学数学学院,获数学与应用数学学士学位,2006年7月毕业于曲阜师范大学运筹与管理学院,获运筹学与控制论硕士学位,同年9月进入信阳师范大学beat365 手机版官方网站工作。 2009年7月至2012年7月,在上海交通大学数学系读博士,获应用数学博士学位。2017年7 月至2018年7月, 在美国Louisiana State University数学系学术访问。主要从事优化问题数值算法的研究,已在Annals of Operations Research、Computational Optimization and Applications、Journal of Optimization Theory and Application、Journal of Global Optimization、Optimization等国际期刊上发表科研论文30余篇,ORCID: https://orcid.org/0000-0002-3038-5605。

发表的主要学术论文:

[1] Jingyong Tang, Jinchuan Zhou. Expected residual minimization formulation for stochastic absolute value equations. Journal of Optimization Theory and Applications, 2024. shttps://doi.org/10.1007/s10957-024-02527-x

[2] Jingyong Tang, Jinchuan Zhou. A two-step Broyden-like method for nonlinear equations. Numerical Algorithms, 2024.  https://doi.org/10.1007/s11075-024-01827-7

[3] Jingyong Tang, Jinchuan Zhou, Zhongfeng Sun. A derivative-free line search technique for Broyden-like method with applications to NCP, wLCP and SI. Annals of Operations Research, 321:541-564, 2023

[4] Jingyong Tang, Jinchuan Zhou, Hongchao Zhang. An accelerated smoothing Newton method with cubic convergence for weighted complementarity problems. Journal of Optimization Theory and Applications, 196:641-665, 2023

[5] Jingyong Tang, Jinchuan Zhou. The solvability of weighted complementarity problems and a smoothing Newton algorithm under the local error bound. Optimization, 2023. https://doi.org/10.1080/02331934.2023.2269943.

[6] Jingyong Tang, Jinchuan Zhou. Improved convergence analysis of a smoothing Newton method for the circular cone programming. Optimization, 71(7): 2005-2031, 2022

[7] Jingyong Tang, Jinchuan Zhou. A modified damped Gauss-Newton method for non-monotone weighted linear complementarity problems. Optimization Methods and Software, 37(3):1145-1164, 2022

[8] Jingyong Tang, Jinchuan Zhou. A smoothing quasi-Newton method for solving general second-order cone complementarity problems. Journal of Global Optimization, 80: 415-438, 2021

[9] Jingyong Tang, Hongchao Zhang. A nonmonotone smoothing newton algorithm for weighted complementarity problem. Journal of Optimization Theory and Applications, 189: 679-715, 2021

[10] Jingyong Tang, Jinchuan Zhou. Quadratic convergence analysis of a nonmonotone Levenberg-Marquardt type method for the weighted nonlinear complementarity problem. Computational Optimization and Applications, 80:213-244, 2021.

[11] Jingyong Tang, Jinchuan Zhou. Smoothing inexact Newton method based on a new derivative-free nonmonotone line search for the NCP over circular cones. Annals of Operations Research, 295: 787-808, 2020

[12] Jingyong Tang, Jinchuan Zhou. A quadratically convergent descent method for the absolute value equations Ax+B|x| =0. Operations Research Letters, 47: 229-234, 2019.

[13] Jinchuan Zhou, Jingyong Tang, Jein-Shan Chen. Parabolic second-order directional differentiability in the hadamard sense of the vector-valued functions associated with circular cones. Journal of Optimization Theory and Applications, 172: 802-823, 2017

[14] Jingyong Tang, Jinchuan Zhou, Liang Fang. A one-parametric class of smoothing functions and an improved regularization Newton method for the NCP. Optimization, 65(5): 977-1001, 2016

[15] Jinchuan Zhou, Jingyong Tang, Jein-Shan Chen. Further relationship between second-order cone and positive semidefinite matrix cone. Optimization, 65(12): 2115-2133, 2016